Category: experiments

drnikolatesla:

Tesla was displaying the first alternating current motors that we still use today for power, and was also doing wizardry lighting wireless light bulbs like a fucking Jedi. The concept was so far ahead of its time that the people in the auditorium literally started panicking and running out the doors because they thought he was doing the devil’s work. His demonstrations would introduce the basic principles to the wireless transmission of energy we all use today in our everyday lives.

Curie is a hard second! She cool!

Tesla was displaying the first alternating current motors that we still use today for power, and was also doing wizardry lighting wireless light bulbs like a fucking Jedi. The concept was so far ahead of its time that the people in the auditorium literally started panicking and running out the doors because they thought he was doing the devil’s work. His demonstrations would introduce the basic principles to the wireless transmission of energy we all use today in our everyday lives.

poopdoggydogg:

Tesla was so far ahead of his time!

drnikolatesla:

“Nature has provided an abundant supply of energy in various forms which might be utilized if proper means and ways can be devised. The sun’s rays falling upon the earth’s surface represent a quantity of energy so enormous that but a small part of it could meet all our demands. By normal incidence the rate is mechanically equivalent to about 95 foot pounds per square foot per second, or nearly 7,300 horse power per acre of ground. In the equatorial regions the mean annual rate is approximately 2,326 and in our latitudes 1,737 horse power for the same area. By using the heat to generate steam and operating a turbine under high vacuum probably 200 horse power per acre could be obtained as net useful power in these parts. This would be very satisfactory were it not for the cost of the apparatus which is greatly increased by the necessity of employing a storage plant sufficient to carry the load almost three-quarters of the time.

"The energy of light rays, constituting about 10% of the total radiation, might be captured by a cold and highly efficient process in photo-electric cells which may become, on this account, of practical importance in the future. Some progress in this direction has already been achieved. But for the time being it appears from a careful estimate, that solar power derived from radiant heat and light, even in the tropics, offers small opportunities for practical exploitation. The existing handicaps will be largely removed when the wireless method of power transmission comes into use. Many plants situated in hot zones, could then be operatively connected in a great super-power system to supply energy, at a constant rate, to all points of the globe.

"The sun emits, however, a peculiar radiation of great energy which I discovered in 1899. Two years previous I had been engaged in an investigation of radio-activity which led me to the conclusion that the phenomena observed were not due to molecular forces residing in the substances themselves, but were caused by a cosmic ray of extraordinary penetrativeness. That it emanated from the sun was an obvious inference, for although many heavenly bodies are undoubtedly possessed of a similar property, the total radiation which the earth receives from all the suns and stars of the universe is only a little more than one-quarter of one percent of that it gets from our luminary. Hence, to look for the cosmic ray elsewhere is much like chercher le midi dans les environs de quatorze heures [looking for lunch in the vicinity of fourteen o’clock]. My theory was strikingly confirmed when I found that the sun does, indeed, emit a ray marvelous in the inconceivable minuteness of its particles and transcending speed of their motion, vastly exceeding that of light. This ray, by impinging against the cosmic dust generates a secondary radiation, relatively very feeble but fairly penetrative, the intensity of which is, of course, almost the same in all directions. German scientists who investigated it in 1901 assumed that it came from the stars and since that time the fantastic idea has been advanced that it has its origin in new matter constantly created in interstellar space!! We may be sure that there is no place in the universe where such a flagrant violation of natural laws, as the flowing of water uphill, is possible. Perhaps, some time in the future when our means of investigation will be immeasurably improved, we may find ways of capturing this force and utilizing it for the attainment of results beyond our present imagining.”

-Nikola Tesla

“OUR FUTURE MOTIVE POWER.” Everyday Science and Mechanics, December 1931.

“Nature has provided an abundant supply of energy in various forms which might be utilized if proper means and ways can be devised. The sun’s rays falling upon the earth’s surface represent a quantity of energy so enormous that but a small part of it could meet all our demands. By normal incidence the rate is mechanically equivalent to about 95 foot pounds per square foot per second, or nearly 7,300 horse power per acre of ground. In the equatorial regions the mean annual rate is approximately 2,326 and in our latitudes 1,737 horse power for the same area. By using the heat to generate steam and operating a turbine under high vacuum probably 200 horse power per acre could be obtained as net useful power in these parts. This would be very satisfactory were it not for the cost of the apparatus which is greatly increased by the necessity of employing a storage plant sufficient to carry the load almost three-quarters of the time.

"The energy of light rays, constituting about 10% of the total radiation, might be captured by a cold and highly efficient process in photo-electric cells which may become, on this account, of practical importance in the future. Some progress in this direction has already been achieved. But for the time being it appears from a careful estimate, that solar power derived from radiant heat and light, even in the tropics, offers small opportunities for practical exploitation. The existing handicaps will be largely removed when the wireless method of power transmission comes into use. Many plants situated in hot zones, could then be operatively connected in a great super-power system to supply energy, at a constant rate, to all points of the globe.

"The sun emits, however, a peculiar radiation of great energy which I discovered in 1899. Two years previous I had been engaged in an investigation of radio-activity which led me to the conclusion that the phenomena observed were not due to molecular forces residing in the substances themselves, but were caused by a cosmic ray of extraordinary penetrativeness. That it emanated from the sun was an obvious inference, for although many heavenly bodies are undoubtedly possessed of a similar property, the total radiation which the earth receives from all the suns and stars of the universe is only a little more than one-quarter of one percent of that it gets from our luminary. Hence, to look for the cosmic ray elsewhere is much like chercher le midi dans les environs de quatorze heures [looking for lunch in the vicinity of fourteen o’clock]. My theory was strikingly confirmed when I found that the sun does, indeed, emit a ray marvelous in the inconceivable minuteness of its particles and transcending speed of their motion, vastly exceeding that of light. This ray, by impinging against the cosmic dust generates a secondary radiation, relatively very feeble but fairly penetrative, the intensity of which is, of course, almost the same in all directions. German scientists who investigated it in 1901 assumed that it came from the stars and since that time the fantastic idea has been advanced that it has its origin in new matter constantly created in interstellar space!! We may be sure that there is no place in the universe where such a flagrant violation of natural laws, as the flowing of water uphill, is possible. Perhaps, some time in the future when our means of investigation will be immeasurably improved, we may find ways of capturing this force and utilizing it for the attainment of results beyond our present imagining.”

-Nikola Tesla

“OUR FUTURE MOTIVE POWER.” Everyday Science and Mechanics, December 1931.

Soon after I left Mr. Edison’s employment a company was formed to develop my electric arc-light system. This system was adopted for street and factory lighting in 1886, but as yet I got no money — only a beautifully engraved stock certificate. Until April of the following year I had a hard financial struggle. Then a new company was formed, and provided me with a laboratory on Liberty Street, in New York City. Here I set to work to commercialize the inventions I had conceived in Europe.

After returning from Pittsburgh, where I spent a year assisting the Westinghouse Company in the design and manufacture of my motors, I resumed work in New York in a little laboratory on Grand Street, where I experienced one of the greatest moments of my life — the first demonstration of the wireless light.

I had been constructing with my assistants the first high-frequency alternators (dynamos), of the kind now used for generating power for wireless telegraphy. At three o’clock in the morning I came to the conclusion that I had overcome all the difficulties and that the machine would operate, and I sent my men to get something to eat. While they were gone I finished getting the machine ready, and arranged things so that there was nothing to be done, except to throw in a switch.

When my assistants returned I took a position in the middle of the laboratory, without any connection whatever between me and the machine to be tested. In each hand I held a long glass tube from which the air had been· exhausted. “If my theory is correct,” I said, “when the switch is thrown in these tubes will become swords of fire.” I ordered the room darkened and the switch thrown in — and instantly the glass tubes became brilliant swords of fire.

Under the influence of great exultation I waved them in circles round and round my head. My men were actually scared, so new and wonderful was the spectacle. They had not known of my wireless light theory, and for a moment they thought I was some kind of a magician or hypnotizer. But the wireless light was a reality, and with that experiment I achieved fame overnight.

Following this success, people of influence began to take an interest in me. I went into “society.” And I gave entertainments in return; some at home, some in my laboratory — expensive ones, too. For the one and only time in my life, I tried to roar a little bit like a lion.

But after two years of this, I said to myself, “What have I done in the past twentx-four months?” And the answer was, “Little or nothing.” I recognized that accomplishment requires isolation. I learned that the man who wants to achieve must give up many things — society, diversion, even rest — and must find his sole recreation and happiness in work. He will live largely with his conceptions and enterprises; they will be as real to him as worldly possessions and friends.

In recent years I have devoted myself to the problem of the wireless transmission of power. Power can be, and at no distant date will be, transmitted without wires, for all commercial uses, such as the lighting of homes and the driving of aeroplanes. I have discovered the essential principles, and it only remains to develop them commercially. When this is done, you will be able to go anywhere in the world — to the mountain top overlooking your farm, to the arctic, or to the desert — and set up a little equipment that will give you heat to cook with, and light to read by. This equipment will be carried in a satchel not as big as the ordinary suit case. In years to come wireless lights will be as common on the farms as ordinary electric lights are nowadays in our cities.

The matter of transmitting power by wireless is so well in hand that I can say I am ready now to transmit 100,000 horsepower by wireless without a loss of more than five percent in transmission. The plant required to transmit this amount will be much smaller than some of the wireless telegraph plants now existing, and will cost only $10,000,000, including water development and electrical apparatus. The effect will be the same whether the distance is one mile or ten thousand miles, and the power can be collected high in the air, underground, or on the ground.

-Nikola Tesla

“Making Your Imagination Work for You.” By M. K. Wisehart. The American Magazine, April 1921.

Nikola Tesla’s Remarkable Experiments With Wireless Lamps and Vacuum Tubes Shown Before the Franklin Institute and the National Electric Light Association in 1893

“These were the most striking results I showed in the transmission of energy… You see how far I have gone into the mastery of electrical vibrations in 1893. I stand here [Fig. 190] in the hall, holding a lamp in my hand, and the energy transmitted lights it. Here again [Fig. 191] I hold a phosphorescent bulb in my hand, and here [Fig. 192] a vacuum tube.

“These experiments, I remember, were made in St. Louis. There was a hall with 6,000 or 7,000 people. When I explained how I had shown a phosphorescent bulb to Lord Kelvin in England, and told them that the bulb was going to spring into light, and the current was turned on and it did burst into light, there was a stampede in the to upper galleries and they all rushed out. They thought it was some part of the devil’s work, and ran out. That was the way my experiments were received.”

–Nikola Tesla

(Tesla explaining his wireless art in a pre-hearing interview with his legal counsel in 1916 to protect his radio patents from the Guglielmo Marconi and the Marconi Company.)

“Nikola Tesla On His Works With Alternating Currents and Their Application to Wireless Telegraphy, and Transmission of Power.” Twenty First Century Books, Breckenridge, Colorado, 2002.

Ahead of his time.

Nikola Tesla poses with his “magnifying transmitter,” capable of producing millions of volts of electricity. The discharge here is 22 feet in length. Tesla had created discharges up to 100 feet in length in numerous experiments in Colorado Springs. This famous photo of the great inventor was a double exposure pic taken for publicity. The inscription on the photograph is addressed to Sir William Crookes and reads;

“To my illustrious friend Sir William Crookes of whom I always think and whose letters I never answer!“

June 17, 1901.

Nikola Tesla

july-deras:

drnikolatesla:

Nikola Tesla and the True Explanation of the Photoelectric Effect

by J. J. J.

The photoelectric effect is a phenomenon which occurs when electromagnetic radiation, such as ultraviolet light, is exposed to certain metallic objects causing the metals to emit electrons from their surface.

In 1905, Albert Einstein gained world fame for supposedly being the first scientist to successfully describe this effect. His theory was that light had little packets (quanta) of energy, or photons, and when exposed to metallic objects at certain frequencies the electrons in these metallic objects would absorb this energy and be broken off from their source. Hence, photoelectrons.

This theory led to the wave-particle duality of light since light seemed to act as both a wave and a particle. In 1921, Einstein was awarded the Nobel Prize in Physics for his theoretical and mathematical explanations of this effect. A theory that even today is still accepted as a fact. But According to experiments, research and data collected by Nikola Tesla, Einstein and many other scientists overlooked some key factors in their interpretations of the effect. 

The history of the photoelectric effect goes back to 1887, when Heinrich Hertz first observed electromagnetic waves in experiments, first predicted by James Clerk Maxwell over twenty years before. After this great discovery, Phillip Lenard and many other scientists, including Nikola Tesla, followed Hertz’ work with their own investigations into the matter.

In 1889, after freeing himself from work in Pittsburgh, Tesla returned to New York to begin work on high-frequency apparatuses, wireless transmission, and to develop theories on the relationship between light and electromagnetic radiation. It was right around this time in Tesla’s life when he was starting to gain fame. His alternating current system was finally getting recognition, and he was being asked to give lectures and demonstrations all over the world. On top of this, he was making new discoveries one after another. One very important discovery he made was the discovery of X-rays in 1884, which he called “shadowgraphs.” These mysterious radiations were still very new to him at this time so he wouldn’t realize their importance until a year later when Wilhelm Roentgen made public the same discovery that would win him the first ever Nobel Prize in Physics in 1901. Unfortunately, Tesla’s laboratory would burn down eight months before Roentgen announced his discovery, and the inventor would lose all his laboratory data, notes, plans, photographs, tools, and inventions. So it must be noted that Nikola Tesla was indeed the first scientist to discover X-rays.

After recovering from the fire that destroyed his laboratory March of 1895, a tragedy that set him back a great deal in work and recognition, Nikola Tesla was finally able to resume his work in 1896. With experiments on radiant energy, such as radio waves and X-rays, not only would Nikola Tesla become the first scientist to discovery radioactivity and electrons, but he would be the first scientist to propose that light and other electromagnetic radiations had both particle-like and wave-like properties–predating Henri Becquerel’s radioactivity discovery by a few months, J.J. Thompson’s discovery of the electron by a couple years (both Becquerel and Thomson won Nobel Prizes), and Einstein and other quantum physicist’s light theory by nearly a decade. But Tesla’s views on these effects were much different than other’s.

In experiments with his newly developed high-vacuum tubes and his high-frequency disruptive coil (Tesla Coil), Tesla shot cathode, and other rays at different metals noting the differences in reflection the streams made upon the metals. His experiments indicated six conclusions.

  1. His highly exhausted bulbs emit material streams which, impinging on the metallic surfaces experimented with, are reflected.
  2. These streams are formed of matter in some primary or elementary condition (what we now consider photons/or electrons).
  3. These material streams are probably the same agent which is the cause of the electro-motive tension between metals in close proximity, or actual contact, and they may possibly, to some extent, determine the energy of combination of the metals with oxygen.
  4. Every metal or conductor is more or less a source of such streams.
  5. These streams must be produced by some radiations which exist in the medium.
  6. These streams resembling the cathodic must be emitted by the sun (cosmic radiations) and probably also other sources of radiant energy, such as an arc light or Bunsen burner. 

He considered all conclusions incontrovertible, and with these results, Tesla believed it probable that there is a continuous supply of such radiations in the medium in some form which must come from the sun. Later experiments with the above conclusion would lead Tesla to his discovery of cosmic rays, which he also discovered come from not only our sun, but from every other star outside our solar system. This discovery would be fifteen years before Victor Hess, who also won a Nobel Prize for this discovery, who even today we still recognize as the discoverer of cosmic rays. 

Tesla also suggested that the primary particles composing the cosmic rays are broken into smaller particles by impact against certain metals, and are thereby enabled to pass into the air. His analogy was that of shooting a bullet at a wall. When the bullet strikes the wall it is crushed and spatters in all directions radial to where it hit the wall.

So according to Tesla, the energy from the flying pieces can only come from that of the bullets, and the results will differ based on the density of the wall, and or the velocity of the bullets. For instance, X-rays are incomparably smaller than cathode rays and have a higher velocity, which is why we are unable to detect X-rays and assume them to be massless photons, while cathode rays are slower so we have been able to label them electrons. This is how Tesla’s radioactivity theory differs from today’s. He realized it was the cosmic rays, and other sources of radiation that cause the radioactivity on earth. We believe the metals, or the elements themselves are producing the radioactivity and emitting electrons, like Einstein’s photoelectric theory suggests, but Tesla’s theory obviously suggests otherwise.

Now to make the above experiments more precise and prove his cosmic radiation theory further, Tesla developed a better method. He used two conductors and connected them to terminals of a condenser which had a considerable electrostatic captivity. One conductor was a metal plate (’P’ in Fig. 1) which was exposed to the Sun’s, and other radiations, and the other being grounded (’p’ in fig. 1) since it is a supply of negative electricity. Now Tesla could derive from a great mass of air, ionized by the radiation disturbance, a current, and store its energy in the condenser (’C’ in Fig. 1).

He could also discharge the current through an indicating device. This method did away with the limitations and incertitude of the electroscope and gave Tesla much better results. He filed a patent based off these results titled, “Apparatus of the Utilization of Radiant Energy,” published in 1901. This would obviously be a precursor to solar panels, but still more advanced than today’s panels because it ran off cosmic radiation and not just our sun’s light. 

So in order to get results like Tesla obtained, one would need to reproduce Tesla’s experiments and patents. You can search anywhere online and see demonstrations of the photoelectric effect, but all are using the weakest instruments to demonstrate the effect–like a basic ultraviolet light and an electroscope. The fact that today’s physical science relies on such demonstrations to prove its theories seems to show that science may not be as advanced as we tend to believe.   

Tesla’s work would obviously get ignored by main stream science, but it seems that today’s technology, which seemingly works off Albert Einstein’s theories, are in reality, working off Tesla’s.

“There can be no great harm in a student taking an erroneous view, but when great minds err, the world must dearly pay for their mistakes.”

–Nikola Tesla

“On Light And Other High Frequency Phenomena.” Lecture delivered before the Franklin Institute, Philadelphia, February 1893, and before the National Electric Light Association, St. Louis, March 1893.

The best!!!. 💚💛❤

drnikolatesla:

Nikola Tesla and the True Explanation of the Photoelectric Effect

by J. J. J.

The photoelectric effect is a phenomenon which occurs when electromagnetic radiation, such as ultraviolet light, is exposed to certain metallic objects causing the metals to emit electrons from their surface.

In 1905, Albert Einstein gained world fame for supposedly being the first scientist to successfully describe this effect. His theory was that light had little packets (quanta) of energy, or photons, and when exposed to metallic objects at certain frequencies the electrons in these metallic objects would absorb this energy and be broken off from their source. Hence, photoelectrons.

This theory led to the wave-particle duality of light since light seemed to act as both a wave and a particle. In 1921, Einstein was awarded the Nobel Prize in Physics for his theoretical and mathematical explanations of this effect. A theory that even today is still accepted as a fact. But According to experiments, research and data collected by Nikola Tesla, Einstein and many other scientists overlooked some key factors in their interpretations of the effect. 

The history of the photoelectric effect goes back to 1887, when Heinrich Hertz first observed electromagnetic waves in experiments, first predicted by James Clerk Maxwell over twenty years before. After this great discovery, Phillip Lenard and many other scientists, including Nikola Tesla, followed Hertz’ work with their own investigations into the matter.

In 1889, after freeing himself from work in Pittsburgh, Tesla returned to New York to begin work on high-frequency apparatuses, wireless transmission, and to develop theories on the relationship between light and electromagnetic radiation. It was right around this time in Tesla’s life when he was starting to gain fame. His alternating current system was finally getting recognition, and he was being asked to give lectures and demonstrations all over the world. On top of this, he was making new discoveries one after another. One very important discovery he made was the discovery of X-rays in 1884, which he called “shadowgraphs.” These mysterious radiations were still very new to him at this time so he wouldn’t realize their importance until a year later when Wilhelm Roentgen made public the same discovery that would win him the first ever Nobel Prize in Physics in 1901. Unfortunately, Tesla’s laboratory would burn down eight months before Roentgen announced his discovery, and the inventor would lose all his laboratory data, notes, plans, photographs, tools, and inventions. So it must be noted that Nikola Tesla was indeed the first scientist to discover X-rays.

After recovering from the fire that destroyed his laboratory March of 1895, a tragedy that set him back a great deal in work and recognition, Nikola Tesla was finally able to resume his work in 1896. With experiments on radiant energy, such as radio waves and X-rays, not only would Nikola Tesla become the first scientist to discovery radioactivity and electrons, but he would be the first scientist to propose that light and other electromagnetic radiations had both particle-like and wave-like properties–predating Henri Becquerel’s radioactivity discovery by a few months, J.J. Thompson’s discovery of the electron by a couple years (both Becquerel and Thomson won Nobel Prizes), and Einstein and other quantum physicist’s light theory by nearly a decade. But Tesla’s views on these effects were much different than other’s.

In experiments with his newly developed high-vacuum tubes and his high-frequency disruptive coil (Tesla Coil), Tesla shot cathode, and other rays at different metals noting the differences in reflection the streams made upon the metals. His experiments indicated six conclusions.

  1. His highly exhausted bulbs emit material streams which, impinging on the metallic surfaces experimented with, are reflected.
  2. These streams are formed of matter in some primary or elementary condition (what we now consider photons/or electrons).
  3. These material streams are probably the same agent which is the cause of the electro-motive tension between metals in close proximity, or actual contact, and they may possibly, to some extent, determine the energy of combination of the metals with oxygen.
  4. Every metal or conductor is more or less a source of such streams.
  5. These streams must be produced by some radiations which exist in the medium.
  6. These streams resembling the cathodic must be emitted by the sun (cosmic radiations) and probably also other sources of radiant energy, such as an arc light or Bunsen burner. 

He considered all conclusions incontrovertible, and with these results, Tesla believed it probable that there is a continuous supply of such radiations in the medium in some form which must come from the sun. Later experiments with the above conclusion would lead Tesla to his discovery of cosmic rays, which he also discovered come from not only our sun, but from every other star outside our solar system. This discovery would be fifteen years before Victor Hess, who also won a Nobel Prize for this discovery, who even today we still recognize as the discoverer of cosmic rays. 

Tesla also suggested that the primary particles composing the cosmic rays are broken into smaller particles by impact against certain metals, and are thereby enabled to pass into the air. His analogy was that of shooting a bullet at a wall. When the bullet strikes the wall it is crushed and spatters in all directions radial to where it hit the wall.

So according to Tesla, the energy from the flying pieces can only come from that of the bullets, and the results will differ based on the density of the wall, and or the velocity of the bullets. For instance, X-rays are incomparably smaller than cathode rays and have a higher velocity, which is why we are unable to detect X-rays and assume them to be massless photons, while cathode rays are slower so we have been able to label them electrons. This is how Tesla’s radioactivity theory differs from today’s. He realized it was the cosmic rays, and other sources of radiation that cause the radioactivity on earth. We believe the metals, or the elements themselves are producing the radioactivity and emitting electrons, like Einstein’s photoelectric theory suggests, but Tesla’s theory obviously suggests otherwise.

Now to make the above experiments more precise and prove his cosmic radiation theory further, Tesla developed a better method. He used two conductors and connected them to terminals of a condenser which had a considerable electrostatic captivity. One conductor was a metal plate (’P’ in Fig. 1) which was exposed to the Sun’s, and other radiations, and the other being grounded (’p’ in fig. 1) since it is a supply of negative electricity. Now Tesla could derive from a great mass of air, ionized by the radiation disturbance, a current, and store its energy in the condenser (’C’ in Fig. 1).

He could also discharge the current through an indicating device. This method did away with the limitations and incertitude of the electroscope and gave Tesla much better results. He filed a patent based off these results titled, “Apparatus of the Utilization of Radiant Energy,” published in 1901. This would obviously be a precursor to solar panels, but still more advanced than today’s panels because it ran off cosmic radiation and not just our sun’s light. 

So in order to get results like Tesla obtained, one would need to reproduce Tesla’s experiments and patents. You can search anywhere online and see demonstrations of the photoelectric effect, but all are using the weakest instruments to demonstrate the effect–like a basic ultraviolet light and an electroscope. The fact that today’s physical science relies on such demonstrations to prove its theories seems to show that science may not be as advanced as we tend to believe.   

Tesla’s work would obviously get ignored by main stream science, but it seems that today’s technology, which seemingly works off Albert Einstein’s theories, are in reality, working off Tesla’s.

“There can be no great harm in a student taking an erroneous view, but when great minds err, the world must dearly pay for their mistakes.”

–Nikola Tesla

“On Light And Other High Frequency Phenomena.” Lecture delivered before the Franklin Institute, Philadelphia, February 1893, and before the National Electric Light Association, St. Louis, March 1893.