Category: wireless

 “The Future of the Wireless Art.”

“A mass in movement resists change of direction. So does the world oppose a new idea. It takes time to make up the minds to its value and importance. Ignorance, prejudice and inertia of the old retard its early progress. It is discredited by insincere exponents and selfish exploiters. It is attacked and condemned by its enemies. Eventually, though, all barriers are thrown down, and it spreads like fire. This will also prove true of the wireless art.

"The practical applications of this revolutionary principle have only begun. So far they have been confined to the use of oscillations which are quickly damped out in their passage through the medium. Still, even this has commanded universal attention. What will be achieved by waves which do not diminish with distance, baffles comprehension.

"It is difficult for a layman to grasp how an electric current can be propagated to distances of thousands of miles without diminution of intention. But it is simple after all. Distance is only a relative conception, a reflection in the mind of physical limitation. A view of electrical phenomena must be free of this delusive impression. However surprising, it is a fact that a sphere of the size of a little marble offers a greater impediment to the passage of a current than the whole earth. Every experiment, then, which can be performed with such a small sphere can likewise be carried out, and much more perfectly, with the immense globe on which we live. This is not merely a theory, but a truth established in numerous and carefully conducted experiments. When the earth is struck mechanically, as is the case in some powerful terrestrial upheaval, it vibrates like a bell, its period being measured in hours. When it is struck electrically, the charge oscillates, approximately, twelve times a second. By impressing upon it current waves of certain lengths, definitely related to its diameter, the globe is thrown into resonant vibration like a wire, stationary waves forming, the nodal and ventral regions of which can be located with mathematical precision. Owing to this fact and the spheroidal shape of the earth, numerous geodetical and other data, very accurate and of the greatest scientific and practical value, can be readily secured. Through the observation of these astonishing phenomena we shall soon be able to determine the exact diameter of the planet, its configuration and volume, the extent of its elevations and depressions, and to measure, with great precision and with nothing more than an electrical device, all terrestrial distances. In the densest fog or darkness of night, without a compass or other instruments of orientation, or a timepiece, it will be possible to guide a vessel along the shortest or orthodromic path, to instantly read the latitude and longitude, the hour, the distance from any point, and the true speed and direction of movement. By proper use of such disturbances a wave may be made to travel over the earth’s surface with any velocity desired, and an electrical effect produced at any spot which can be selected at will and the geographical position of which can be closely ascertained from simple rules of trigonometry.

"This mode of conveying electrical energy to a distance is not ‘wireless’ in the popular sense, but a transmission through a conductor, and one which is incomparably more perfect than any artificial one. All impediments of conduction arise from confinement of the electric and magnetic fluxes to narrow channels. The globe is free of such cramping and hinderment. It is an ideal conductor because of its immensity, isolation in space, and geometrical form. Its singleness is only an apparent limitation, for by impressing upon it numerous non-interfering vibrations, the flow of energy may be directed through any number of paths which, though bodily connected, are yet perfectly distinct and separate like ever so many cables. Any apparatus, then, which can be operated through one or more wires, at distances obviously limited, can likewise be worked without artificial conductors, and with the same facility and precision, at distances without limit other than that imposed by the physical dimensions of the globe.

"It is intended to give practical demonstrations of these principles with the plant illustrated. As soon as completed, it will be possible for a business man in New York to dictate instructions, and have them instantly appear in type at his office in London or elsewhere. He will be able to call up, from his desk, and talk to any telephone subscriber on the globe, without any change whatever in the existing equipment. An inexpensive instrument, not bigger than a watch, will enable its bearer to hear anywhere, on sea or land, music or song, the speech of a political leader, the address of an eminent man of science, or the sermon of an eloquent clergyman, delivered in some other place, however distant. In the same manner any picture, character, drawing, or print can be transferred from one to another place. Millions of such instruments can be operated from but one plant of this kind. More important than all of this, however, will be the transmission of power, without wires, which will be shown on a scale large enough to carry conviction. These few indications will be sufficient to show that the wireless art offers greater possibilities than any invention or discovery heretofore made, and if the conditions are favorable, we can expect with certitude that in the next few years wonders will be wrought by its application.”

–Nikola Tesla

Wireless Telegraphy & Telephony, 1908.

poopdoggydogg:

This is too true.

drnikolatesla:

“…Blind, faint-hearted, doubting world! .  .  . Humanity is not yet sufficiently advanced to be willingly led by the discover’s keen searching sense. But who knows? Perhaps it is better in this present world of ours that a revolutionary idea or invention instead of being helped and patted, be hampered and ill-treated in its adolescence—by want of means, by selfish interest, pedantry, stupidity and ignorance; that it be attacked and stifled; that it pass through bitter trials and tribulations, through the heartless strife of commercial existence. So do we get our light. So all that was great in the past was ridiculed, condemned, combated, suppressed—only to emerge all the more powerfully, all the more triumphantly from the struggle.”

–Nikola Tesla

“The Transmission of Electrical Energy Without Wires As a Means for Furthering Peace.“ Electrical World and Engineer, January 7, 1905.

“…Blind, faint-hearted, doubting world! .  .  . Humanity is not yet sufficiently advanced to be willingly led by the discover’s keen searching sense. But who knows? Perhaps it is better in this present world of ours that a revolutionary idea or invention instead of being helped and patted, be hampered and ill-treated in its adolescence—by want of means, by selfish interest, pedantry, stupidity and ignorance; that it be attacked and stifled; that it pass through bitter trials and tribulations, through the heartless strife of commercial existence. So do we get our light. So all that was great in the past was ridiculed, condemned, combated, suppressed—only to emerge all the more powerfully, all the more triumphantly from the struggle.”

–Nikola Tesla

“The Transmission of Electrical Energy Without Wires As a Means for Furthering Peace.“ Electrical World and Engineer, January 7, 1905.

drnikolatesla:

Nikola Tesla Explaining His World Wireless System and How It Differs From Today’s.

A pre-hearing interview with his legal counsel in 1916 to protect his radio patents from the Guglielmo Marconi and the Marconi Company.

Tesla:

“This illustrates, on a larger scale, the earth. Here is my transmitter—mine or anybody’s transmitter—because my system is the system of the day. The only difference is in the way I apply it. They, the radio engineers, want to apply my system one way; I want to apply it in another way.”

“This is the circuit energizing the antenna. As the vibratory energy flows, two things happen: There is electromagnetic energy radiated and a current passes into the earth. The first goes out in the form of rays, which have definite properties. These rays propagate with the velocity of light, 300,000 kilometers per second. This energy is exactly like a hot stove. If you will imagine that the cylinder antenna is hot—and indeed it is heated by the current—it would radiate out energy of exactly the same kind as it does now. If the system is applied in the sense I want to apply it, this energy is absolutely lost, in all cases most of it is lost. While this electromagnetic energy throbs, a current passes into the globe.”

“Now, there is a vast difference between these two, the electromagnetic and current energies. That energy which goes out in the form of rays, is, as I have indicated here, unrecoverable, hopelessly lost. You can operate a little instrument by catching a billionth part of it but, except this, all goes out into space never to return. This other energy, however, of the current in the globe, is stored and completely recoverable. Theoretically, it does not take much effort to maintain the earth in electrical vibration. I have, in fact, worked out a plant of 10,000 horse-power which would operate with no bigger loss than 1 percent of the whole power applied; that is, with the exception of the frictional energy that is consumed in the rotation of the engines and the heating of the conductors, I would not lose more than 1 percent. In other words, if I have a 10,000 horsepower plant, it would take only 100 horsepower to keep the earth vibrating so long as there is no energy taken out at any other place.”

“There is another difference. The electromagnetic energy travels with the speed of light, but see how the current flows. At the first moment, this current propagates exactly like the shadow of the moon at the earth’s surface. It starts with infinite velocity from that point, but its speed rapidly diminishes; it flows slower and slower until it reaches the equator, 6,000 miles from the transmitter. At that point, the current flows with the speed of light—that is, 300,000 kilometers per second. But, if you consider the resultant current through the globe along the axis of symmetry of propagation, the resultant current flows continuously with the same velocity of light.”

“Whether this current passing through the center of the earth to the opposite side is real, or whether it is merely an effect of these surface currents, makes absolutely no difference. To understand the concept, one must imagine that the current from the transmitter flows straight to the opposite point of the globe.”

“There is where I answer the attacks which have been made on me. For instance, Dr. Pupin has ridiculed the Tesla system. He says,”

  “The energy goes only in all directions.”

“It does not. It goes only in one direction. He is deceived by the size and shape of the earth. Looking at the horizon, he imagines how the currents flow in all directions, but if he would only for a moment think that this earth is like a copper wire and the transmitter on the top of the same, he would immediately realize that the current only flows along the axis of the propagation.”

“The mode of propagation can be expressed by a very simple mathematical law, which is, the current at any point flows with a velocity proportionate to the cosecant of the angle which a radius from that point includes with the axis of symmetry of wave propagation. At the transmitter, the cosecant is infinite; therefore, the velocity is infinite. At a distance of 6,000 miles, the cosecant is unity; therefore, the velocity is equal to that of light. This law I have expressed in a patent by the statement that the projections of all zones on the axis of symmetry are of the same length, which means, in other words, as is known from rules of trigonometry, that the areas of all the zones must also be equal. It says that although the waves travel with different velocities from point to point, nevertheless each half wave always includes the same area. This is a simple law, not unlike the one which has been expressed by Kepler with reference to the areas swept over by the radii vectors.”

“I hope that I have been clear in this exposition—in bringing to your attention that what I show here is the system of the day, and is my system—only the radio engineers use my apparatus to produce too much of this electromagnetic energy here, instead of concentrating all their attention on designing an apparatus which will impress a current upon the earth and not waste the power of the plant in an uneconomical process.”

Counsel:

“You say radio engineers put too much energy into the radiating part. What, as a matter of fact, according to your conception, is the part of the energy that is received in the receivers in the present system?”

Tesla:

“That has been investigated. Very valuable experiments have been made by Dr. Austin, who has measured the effects at a distance. He has evolved a formula in agreement with the Hertz wave theory, and the energy collected is an absolutely vanishing quantity. It is just enough to operate a very delicate receiver. If it were not for such devices as are now in use, the audion, for instance, nothing could be done. But with the audion, they magnify so that this infinitesimal energy they get is sufficient to operate the receiver. With my system, I can convey to a distant point millions of times the energy they transmit.”

Counsel:

“To illustrate my question, take for instance the energy used at Sayville and the reception of that at Nauen. I want to know whether it is your idea that the reception there is due to the earth currents that you have described or to the radiated energy.”

Tesla:

“It is far more due to the earth currents than to the radiated energy. I believe, indeed, that the radiated energy alone could not possibly produce the effect across the Atlantic. It is simply because they are incidentally sending a current through the globe—which they think is their current—that the receiver is affected. The current produces variations of potential at the earth’s surface in Germany; these fluctuations of potential energize the circuit, and by resonance they increase the potential there and operate the receiver. But I do not mean that it is absolutely impossible to use my apparatus and operate with electromagnetic waves across the Atlantic or Pacific. I only say that according to calculations, for instance, which I have made of the Sayville plant, the radiated energy is very small and cannot be operative. I have also calculated the distribution of the charge on the antenna. I am told that the Sayville antenna is without abrupt changes of capacity. It is impossible. There are changes even in a cylindrical antenna; but particularly in that form at Sayville—there are very abrupt changes…”

“From my circuit you can get either electromagnetic waves, 90 percent of electromagnetic waves if you like, and 10 percent in the current energy that passes through the earth. Or, you can reverse the process and get 10 percent of the energy in electromagnetic waves and 90 percent in energy of the current that passes through the earth... I am suppressing electromagnetic waves. In my system, you should free yourself of the idea that there is radiation, that the energy is radiated. It is not radiated; it is conserved.”

“Nikola Tesla On His Works With Alternating Currents and Their Application to Wireless Telegraphy, and Transmission of Power.” Twenty First Century Books, Breckenridge, Colorado, 2002.

Faster than light energy transmission!

Nikola Tesla Explaining His World Wireless System and How It Differs From Today’s.

A pre-hearing interview with his legal counsel in 1916 to protect his radio patents from the Guglielmo Marconi and the Marconi Company.

Tesla:

“This illustrates, on a larger scale, the earth. Here is my transmitter—mine or anybody’s transmitter—because my system is the system of the day. The only difference is in the way I apply it. They, the radio engineers, want to apply my system one way; I want to apply it in another way.”

“This is the circuit energizing the antenna. As the vibratory energy flows, two things happen: There is electromagnetic energy radiated and a current passes into the earth. The first goes out in the form of rays, which have definite properties. These rays propagate with the velocity of light, 300,000 kilometers per second. This energy is exactly like a hot stove. If you will imagine that the cylinder antenna is hot—and indeed it is heated by the current—it would radiate out energy of exactly the same kind as it does now. If the system is applied in the sense I want to apply it, this energy is absolutely lost, in all cases most of it is lost. While this electromagnetic energy throbs, a current passes into the globe.”

“Now, there is a vast difference between these two, the electromagnetic and current energies. That energy which goes out in the form of rays, is, as I have indicated here, unrecoverable, hopelessly lost. You can operate a little instrument by catching a billionth part of it but, except this, all goes out into space never to return. This other energy, however, of the current in the globe, is stored and completely recoverable. Theoretically, it does not take much effort to maintain the earth in electrical vibration. I have, in fact, worked out a plant of 10,000 horse-power which would operate with no bigger loss than 1 percent of the whole power applied; that is, with the exception of the frictional energy that is consumed in the rotation of the engines and the heating of the conductors, I would not lose more than 1 percent. In other words, if I have a 10,000 horsepower plant, it would take only 100 horsepower to keep the earth vibrating so long as there is no energy taken out at any other place.”

“There is another difference. The electromagnetic energy travels with the speed of light, but see how the current flows. At the first moment, this current propagates exactly like the shadow of the moon at the earth’s surface. It starts with infinite velocity from that point, but its speed rapidly diminishes; it flows slower and slower until it reaches the equator, 6,000 miles from the transmitter. At that point, the current flows with the speed of light—that is, 300,000 kilometers per second. But, if you consider the resultant current through the globe along the axis of symmetry of propagation, the resultant current flows continuously with the same velocity of light.”

“Whether this current passing through the center of the earth to the opposite side is real, or whether it is merely an effect of these surface currents, makes absolutely no difference. To understand the concept, one must imagine that the current from the transmitter flows straight to the opposite point of the globe.”

“There is where I answer the attacks which have been made on me. For instance, Dr. Pupin has ridiculed the Tesla system. He says,”

  “The energy goes only in all directions.”

“It does not. It goes only in one direction. He is deceived by the size and shape of the earth. Looking at the horizon, he imagines how the currents flow in all directions, but if he would only for a moment think that this earth is like a copper wire and the transmitter on the top of the same, he would immediately realize that the current only flows along the axis of the propagation.”

“The mode of propagation can be expressed by a very simple mathematical law, which is, the current at any point flows with a velocity proportionate to the cosecant of the angle which a radius from that point includes with the axis of symmetry of wave propagation. At the transmitter, the cosecant is infinite; therefore, the velocity is infinite. At a distance of 6,000 miles, the cosecant is unity; therefore, the velocity is equal to that of light. This law I have expressed in a patent by the statement that the projections of all zones on the axis of symmetry are of the same length, which means, in other words, as is known from rules of trigonometry, that the areas of all the zones must also be equal. It says that although the waves travel with different velocities from point to point, nevertheless each half wave always includes the same area. This is a simple law, not unlike the one which has been expressed by Kepler with reference to the areas swept over by the radii vectors.”

“I hope that I have been clear in this exposition—in bringing to your attention that what I show here is the system of the day, and is my system—only the radio engineers use my apparatus to produce too much of this electromagnetic energy here, instead of concentrating all their attention on designing an apparatus which will impress a current upon the earth and not waste the power of the plant in an uneconomical process.”

Counsel:

“You say radio engineers put too much energy into the radiating part. What, as a matter of fact, according to your conception, is the part of the energy that is received in the receivers in the present system?”

Tesla:

“That has been investigated. Very valuable experiments have been made by Dr. Austin, who has measured the effects at a distance. He has evolved a formula in agreement with the Hertz wave theory, and the energy collected is an absolutely vanishing quantity. It is just enough to operate a very delicate receiver. If it were not for such devices as are now in use, the audion, for instance, nothing could be done. But with the audion, they magnify so that this infinitesimal energy they get is sufficient to operate the receiver. With my system, I can convey to a distant point millions of times the energy they transmit.”

Counsel:

“To illustrate my question, take for instance the energy used at Sayville and the reception of that at Nauen. I want to know whether it is your idea that the reception there is due to the earth currents that you have described or to the radiated energy.”

Tesla:

“It is far more due to the earth currents than to the radiated energy. I believe, indeed, that the radiated energy alone could not possibly produce the effect across the Atlantic. It is simply because they are incidentally sending a current through the globe—which they think is their current—that the receiver is affected. The current produces variations of potential at the earth’s surface in Germany; these fluctuations of potential energize the circuit, and by resonance they increase the potential there and operate the receiver. But I do not mean that it is absolutely impossible to use my apparatus and operate with electromagnetic waves across the Atlantic or Pacific. I only say that according to calculations, for instance, which I have made of the Sayville plant, the radiated energy is very small and cannot be operative. I have also calculated the distribution of the charge on the antenna. I am told that the Sayville antenna is without abrupt changes of capacity. It is impossible. There are changes even in a cylindrical antenna; but particularly in that form at Sayville—there are very abrupt changes…”

“From my circuit you can get either electromagnetic waves, 90 percent of electromagnetic waves if you like, and 10 percent in the current energy that passes through the earth. Or, you can reverse the process and get 10 percent of the energy in electromagnetic waves and 90 percent in energy of the current that passes through the earth... I am suppressing electromagnetic waves. In my system, you should free yourself of the idea that there is radiation, that the energy is radiated. It is not radiated; it is conserved.”

“Nikola Tesla On His Works With Alternating Currents and Their Application to Wireless Telegraphy, and Transmission of Power.” Twenty First Century Books, Breckenridge, Colorado, 2002.

Wardenclyffe Tower⚡⚡⚡

poopdoggydogg:

The first Jedi!

drnikolatesla:

Soon after I left Mr. Edison’s employment a company was formed to develop my electric arc-light system. This system was adopted for street and factory lighting in 1886, but as yet I got no money — only a beautifully engraved stock certificate. Until April of the following year I had a hard financial struggle. Then a new company was formed, and provided me with a laboratory on Liberty Street, in New York City. Here I set to work to commercialize the inventions I had conceived in Europe.

After returning from Pittsburgh, where I spent a year assisting the Westinghouse Company in the design and manufacture of my motors, I resumed work in New York in a little laboratory on Grand Street, where I experienced one of the greatest moments of my life — the first demonstration of the wireless light.

I had been constructing with my assistants the first high-frequency alternators (dynamos), of the kind now used for generating power for wireless telegraphy. At three o’clock in the morning I came to the conclusion that I had overcome all the difficulties and that the machine would operate, and I sent my men to get something to eat. While they were gone I finished getting the machine ready, and arranged things so that there was nothing to be done, except to throw in a switch.

When my assistants returned I took a position in the middle of the laboratory, without any connection whatever between me and the machine to be tested. In each hand I held a long glass tube from which the air had been· exhausted. “If my theory is correct,” I said, “when the switch is thrown in these tubes will become swords of fire.” I ordered the room darkened and the switch thrown in — and instantly the glass tubes became brilliant swords of fire.

Under the influence of great exultation I waved them in circles round and round my head. My men were actually scared, so new and wonderful was the spectacle. They had not known of my wireless light theory, and for a moment they thought I was some kind of a magician or hypnotizer. But the wireless light was a reality, and with that experiment I achieved fame overnight.

Following this success, people of influence began to take an interest in me. I went into “society.” And I gave entertainments in return; some at home, some in my laboratory — expensive ones, too. For the one and only time in my life, I tried to roar a little bit like a lion.

But after two years of this, I said to myself, “What have I done in the past twentx-four months?” And the answer was, “Little or nothing.” I recognized that accomplishment requires isolation. I learned that the man who wants to achieve must give up many things — society, diversion, even rest — and must find his sole recreation and happiness in work. He will live largely with his conceptions and enterprises; they will be as real to him as worldly possessions and friends.

In recent years I have devoted myself to the problem of the wireless transmission of power. Power can be, and at no distant date will be, transmitted without wires, for all commercial uses, such as the lighting of homes and the driving of aeroplanes. I have discovered the essential principles, and it only remains to develop them commercially. When this is done, you will be able to go anywhere in the world — to the mountain top overlooking your farm, to the arctic, or to the desert — and set up a little equipment that will give you heat to cook with, and light to read by. This equipment will be carried in a satchel not as big as the ordinary suit case. In years to come wireless lights will be as common on the farms as ordinary electric lights are nowadays in our cities.

The matter of transmitting power by wireless is so well in hand that I can say I am ready now to transmit 100,000 horsepower by wireless without a loss of more than five percent in transmission. The plant required to transmit this amount will be much smaller than some of the wireless telegraph plants now existing, and will cost only $10,000,000, including water development and electrical apparatus. The effect will be the same whether the distance is one mile or ten thousand miles, and the power can be collected high in the air, underground, or on the ground.

-Nikola Tesla

“Making Your Imagination Work for You.” By M. K. Wisehart. The American Magazine, April 1921.

Soon after I left Mr. Edison’s employment a company was formed to develop my electric arc-light system. This system was adopted for street and factory lighting in 1886, but as yet I got no money — only a beautifully engraved stock certificate. Until April of the following year I had a hard financial struggle. Then a new company was formed, and provided me with a laboratory on Liberty Street, in New York City. Here I set to work to commercialize the inventions I had conceived in Europe.

After returning from Pittsburgh, where I spent a year assisting the Westinghouse Company in the design and manufacture of my motors, I resumed work in New York in a little laboratory on Grand Street, where I experienced one of the greatest moments of my life — the first demonstration of the wireless light.

I had been constructing with my assistants the first high-frequency alternators (dynamos), of the kind now used for generating power for wireless telegraphy. At three o’clock in the morning I came to the conclusion that I had overcome all the difficulties and that the machine would operate, and I sent my men to get something to eat. While they were gone I finished getting the machine ready, and arranged things so that there was nothing to be done, except to throw in a switch.

When my assistants returned I took a position in the middle of the laboratory, without any connection whatever between me and the machine to be tested. In each hand I held a long glass tube from which the air had been· exhausted. “If my theory is correct,” I said, “when the switch is thrown in these tubes will become swords of fire.” I ordered the room darkened and the switch thrown in — and instantly the glass tubes became brilliant swords of fire.

Under the influence of great exultation I waved them in circles round and round my head. My men were actually scared, so new and wonderful was the spectacle. They had not known of my wireless light theory, and for a moment they thought I was some kind of a magician or hypnotizer. But the wireless light was a reality, and with that experiment I achieved fame overnight.

Following this success, people of influence began to take an interest in me. I went into “society.” And I gave entertainments in return; some at home, some in my laboratory — expensive ones, too. For the one and only time in my life, I tried to roar a little bit like a lion.

But after two years of this, I said to myself, “What have I done in the past twentx-four months?” And the answer was, “Little or nothing.” I recognized that accomplishment requires isolation. I learned that the man who wants to achieve must give up many things — society, diversion, even rest — and must find his sole recreation and happiness in work. He will live largely with his conceptions and enterprises; they will be as real to him as worldly possessions and friends.

In recent years I have devoted myself to the problem of the wireless transmission of power. Power can be, and at no distant date will be, transmitted without wires, for all commercial uses, such as the lighting of homes and the driving of aeroplanes. I have discovered the essential principles, and it only remains to develop them commercially. When this is done, you will be able to go anywhere in the world — to the mountain top overlooking your farm, to the arctic, or to the desert — and set up a little equipment that will give you heat to cook with, and light to read by. This equipment will be carried in a satchel not as big as the ordinary suit case. In years to come wireless lights will be as common on the farms as ordinary electric lights are nowadays in our cities.

The matter of transmitting power by wireless is so well in hand that I can say I am ready now to transmit 100,000 horsepower by wireless without a loss of more than five percent in transmission. The plant required to transmit this amount will be much smaller than some of the wireless telegraph plants now existing, and will cost only $10,000,000, including water development and electrical apparatus. The effect will be the same whether the distance is one mile or ten thousand miles, and the power can be collected high in the air, underground, or on the ground.

-Nikola Tesla

“Making Your Imagination Work for You.” By M. K. Wisehart. The American Magazine, April 1921.

ministryofpeculiaroccurrences:

xtestament:

poopdoggydogg:

miscellaneous-bummer:

drnikolatesla:

“Tesla’s New Monarch of Machines.”

New York Herald, Oct. 15, 1911.

Noted Balkan Scientist Claims to Have Perfected an Engine That Will Develop Ten Horsepower to Every Pound of Weight, and Promises Soon to Give to the World a Flying Machine Without Wings, Propellers or Gas Bag. Characterizes Aeroplanes of Today as Mere Dangerous Toys Compared With the Safe and Stable Appliance Which Will Be Used in a Short Time to Dash Through the Air at a Speed Now Unimagined

Just what is your new invention?“ I asked.

“I have accomplished what mechanical engineers have been dreaming about ever since the invention of steam power,” replied Dr. Tesla. “That is the perfect rotary engine. It happens that I have also produced an engine which will give at least twenty-five times as much power to a pound of weight as the lightest weight engine of any kind that has yet been produced.

“In doing this I have made use of two properties which have always been known to be possessed by all fluids, but which have not heretofore been utilized. These properties are adhesion and viscosity.

“Put a drop of water on a metal plate. The drop will roll off, but a certain amount of the water will remain on the plate until it evaporates or is removed by some absorptive means. The metal does not absorb any of the water, but the water adheres to it.

“The drop of water may change its shape, but until its particles are separated by some external power it remains intact. This tendency of all fluids to resist molecular separation is viscosity. It is especially noticeable in the heavier oils.

“It is these properties of adhesion and viscosity that cause the “skin friction” that impedes a ship in its progress through the water or an aeroplane in going through the air. All fluids have these qualities–and you must keep in mind that air is a fluid, all gases are fluids, steam is fluid. Every known means of transmitting or developing mechanical power is through a fluid medium.

“Now, suppose we make this metal plate that I have spoken of circular in shape and mount it at its centre on a shaft so that it can be revolved. Apply power to rotate the shaft and what happens? Why, whatever fluid the disk happens to be revolving in is agitated and dragged along in the direction of rotation, because the fluid tends to adhere to the disk and the viscosity causes the motion given to the adhering particles of the fluid to be transmitted to the whole mass.  Here, I can show you better than tell you.”

Dr. Tesla led the way into an adjoining room.  On a desk was a small electric motor and mounted on the shaft were half a dozen flat disks, separated by perhaps a sixteenth of an inch from one another, each disk being less than that in thickness. He turned a switch and the motor began to buzz. A wave of cool air was immediately felt.

“There we have a disk, or rather a series of disks, revolving in a fluid–the air,– said the inventor. "You need no proof to tell you that the air is being agitated and propelled violently. If you will hold your hand over the centre of these disks–you see the centres have been cut away–you will feel the suction as air is drawn in to be expelled from the peripheries of the disks.

“Now, suppose these revolving disks were enclosed in an air tight case, so constructed that the air could enter only at one point and be expelled only at another–what would we have?”

“You’d have an air pump,” I suggested.

“Exactly–an air pump or blower,” said Dr. Tesla.

“There is one now in operation delivering ten thousand cubic feet of air a minute. "Now, come over here.”

He stepped across the hall and into another room, where three or four draughtsmen were at work and various mechanical and electrical contrivances were scattered about. At one side of the room was what appeared to be a zinc or aluminum tank, divided into two sections, one above the other, while a pipe that ran along the wall above the upper division of the tank was connected with a little aluminum case about the size and shape of a small alarm clock. A tiny electric motor was attached to a shaft that protruded from one side of the aluminum case. The lower division of the tank was filled with water.

“Inside of this aluminum case are several disks mounted on a shaft and immersed in a fluid, water,” said Dr. Tesla. “From this lower tank the water has free access to the case enclosing the disks. This pipe leads from the periphery of the case. I turn the current on, the motor turns the disks and as I open this valve in the pipe the water flows.”

He turned the valve and the water certainly did flow. Instantly a stream that would have filled a barrel in a very few minutes began to run out of the pipe into the upper part of the tank and thence into the lower tank.

“This is only a toy,” said Dr. Tesla. "There are only half a dozen disks” –runners,– I call them–each less than three inches in diameter, inside of that case. They are just like the disks you saw on the first motor–no vanes, blades or attachments of any kind.  Just perfectly smooth, flat disks revolving in their own planes and pumping water because of the viscosity and adhesion of the fluid. One such pump now in operation, with eight disks, eighteen inches in diameter, pumps four thousand gallons a minute to a height of 360 feet.“

We went back into the big, well lighted office. I was beginning to grasp the new Tesla principle.

“Suppose now we reversed the operation,” continued the inventor. "You have seen the disks acting as a pump. Suppose we had water, or air under pressure, or steam under pressure, or gas under pressure, and let it run into the case in which the disks are contained–what would happen?“

"The disks would revolve and any machinery attached to the shaft would be operated–you would convert the pump into an engine,” I suggested.

“That is exactly what would happen–what does happen,” replied Dr. Tesla. “It is an engine that does all that engineers have ever dreamed of an engine doing, and more. Down at the Waterside power station of the New York Edison Company, through their courtesy, I have had a number of such engines in operation.  In one of them the disks are only nine inches in diameter and the whole working part is two inches thick.  With steam as the propulsive fluid it develops 110-horse power, and could do twice as much.”

“You have got what Professor Langley was trying to evolve for his flying machine–an engine that will give a horse power for a pound of weight,” I suggested.

Ten Horse Power to the Pound.

“I have got more than that,” replied Dr. Tesla.  “I have an engine that will give ten horse power to the pound of weight. That is twenty-five times as powerful as the lightest weight engine in use today. The lightest gas engine used on aeroplanes weighs two and one-half pounds to the horse power. With two and one-half pounds of weight I can develop twenty-five horse power.”

“That means the solution of the problem of flying,” I suggested.

“Yes, and many more,” was the reply. "The applications of this principle, both for imparting power to fluids, as in pumps, and for deriving power from fluids, as in turbine, are boundless. It costs almost nothing to make, there is nothing about it to get out of order, it is reversible–simply have two ports for the gas or steam, to enter by, one on each side, and let it into one side or other. There are no blades or vanes to get out of order–the steam turbine is a delicate thing.“

I remembered the bushels of broken blades that were gathered out of the turbine casings of the first turbine equipped steamship to cross the ocean, and realized the importance of this phase of the new engine.

"Then, too,” Dr. Tesla went on, “there are no delicate adjustments to be made. The distance between the disks is not a matter of microscopic accuracy and there is no necessity for minute clearances between the disks and the case. All one needs is some disks mounted on a shaft, spaced a little distance apart and cased so that a fluid can enter at one point and go out at another. If the fluid enters at the centre and goes out at the periphery it is a pump. If it enters at the periphery and goes out at the center it is a motor.

"Coupling these engines in series, one can do away with gearing in machinery. Factories can be equipped without shafting. The motor is especially adapted to automobiles, for it will run on gas explosions as well as on steam. The gas or steam can be let into a dozen ports all around the rim of the case if desired. It is possible to run it as a gas engine with a continuous flow of gas, gasoline and air being mixed and the continuous combustion causing expansion and pressure to operate the motor. The expansive power of steam, as well as its propulsive power, can be utilized as in a turbine or a reciprocating engine. By permitting the propelling fluid to move along the lines of least resistance a considerably larger proportion of the available power is utilized.

"As an air compressor it is highly efficient. There is a large engine of this type now in practical operation as an air compressor and giving remarkable service. Refrigeration on a scale hitherto never attempted will be practical, through the use of this engine in compressing air, and the manufacture of liquid air commercially is now entirely feasible.

"With a thousand horse power engine, weighing only one hundred pounds, imagine the possibilities in automobiles, locomotives and steamships. In the space now occupied by the engines of the Lusitania twenty-five times her 80,000 horse power could be developed, were it possible to provide boiler capacity sufficient to furnish the necessary steam.”

“And it makes the aeroplane practical,” I suggested.

“Not the aeroplane, the flying machine,” responded Dr. Tesla. “Now you have struck the point in which I am most deeply interested–the object toward which I have been devoting my energies for more than twenty years–the dream of my life. It was in seeking the means of making the perfect flying machine that I developed this engine.

"Twenty years ago I believed that I would be the first man to fly; that I was on the track of accomplishing what no one else was anywhere near reaching. I was working entirely in electricity then and did not realize that the gasoline engine was approaching a perfection that was going to make the aeroplane feasible. There is nothing new about the aeroplane but its engine, you know.

"What I was working on twenty years ago was the wireless transmission of electric power. My idea was a flying machine propelled by an electric motor, with power supplied from stations on the earth. I have not accomplished this as yet, but am confident that I will in time.

"When I found that I had been anticipated as to the flying machine, by men working in a different field, I began to study the problem from other angles, to regard it as a mechanical rather than an electrical problem. I felt certain there must be some means of obtaining power that was better than any now in use. And by vigorous use of my gray matter for a number of years, I grasped the possibilities of the principle of the viscosity and adhesion of fluids and conceived the mechanism of my engine. Now that I have it, my next step will be the perfect flying machine.”

“An aeroplane driven by your engine?” I asked.

“Not at all,” said Dr. Tesla. "The aeroplane is fatally defective. It is merely a toy–a sporting play-thing. It can never become commercially practical. It has fatal defects. One is the fact that when it encounters a downward current of air it is helpless. The “hole in the air” of which aviators speak is simply a downward current, and unless the aeroplane is high enough above the earth to move laterally but can do nothing but fall.

“There is no way of detecting these downward currents, no way of avoiding them, and therefore the aeroplane must always be subject to chance and its operator to the risk of fatal accident. Sportsmen will always take these chances, but as a business proposition the risk is too great.

"The flying machine of the future–my flying machine–will be heavier than air, but it will not be an aeroplane. It will have no wings. It will be substantial, solid, stable. You cannot have a stable airplane. The gyroscope can never be successfully applied to the airplane, for it would give a stability that would result in the machine being torn to pieces by the wind, just as the unprotected aeroplane on the ground is torn to pieces by a high wind.

"My flying machine will have neither wings nor propellers. You might see it on the ground and you would never guess that it was a flying machine. Yet it will be able to move at will through the air in any direction with perfect safety, higher speeds than have yet been reached, regardless of weather and oblivious of "holes in the air” or downward currents. It will ascend in such currents if desired. It can remain absolutely stationary in the air, even in a wind, for great length of time. Its lifting power will not depend upon any such delicate devices as the bird has to employ, but upon positive mechanical action.“

"You will get stability through gyroscopes?” I asked.

“Through gyroscopic action of my engine, assisted by some devices I am not yet prepared to talk about,” he replied.

“Powerful air currents that may be deflected at will, if produced by engines and compressors sufficiently light and powerful, might lift a heavy body off the ground and propel it through the air,” I ventured, wondering if I had grasped the inventor’s secret.

Dr. Tesla smiled an inscrutable smile.

“All I have to say on that point is that my airship will have neither gas bag, wings nor propellers,” he said. “It is the child of my dreams, the product of years of intense and painful toil and research. I am not going to talk about it any further. But whatever my airship may be, here at least is an engine that will do things that no other engine ever has done, and that is something tangible.”

He was too far ahead of his time

It’s pretty amazing how far ahead he was.

Why does one of those pictures look like our idea of a UFO?

Wonderful interview with one of the world’s great minds…